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X-RAY DIFFRACTION FROM THE 8H(44) STRUCTURE
CONTAINING STACKING FAULTS

BY S.M. KACZMAREK, E. MICHALSKI, M. DEMIANIUK AND J. ZMIJA

Institute of Technical Physics, Military,Academy of Technology, Warsaw*

( Receired September 29, 1980; revised version received December 16, 1980)

The influence of all possible 23-types of faults in the 8H(44) structure on peak broadening Aw{h;/,
peak shifts Ahs{hs}, and changes in the intensity of the peak maxima was estimated for single crystal
reflexions with /; == 8M, 8M=1, +2, +3, +4. The values of Ahs{hs},, Aw{hs} and 1,...(h3) were calculated
using the same expressions as in the previous paper. The coefficients a; of the characteristic equation and
the boundary conditions, J(m), were calculated by the Prasad and Leie method, which was adopted in
this paper to the 8H(44) structure and other long periodic nH(n/2 n/2)-type structures. On the basis of
the results obtained, the new method of stacking faults analysis in the above structures was presented.
The results for 8H(44) structure was compared with the theoretical intensity distributions, I;o; which we
obtained by the model analysis method. Moreover, some examples of the stacking faults analysis in the
ZnSe doping Mn crystals with 8H(44) structure were presented.

PACS numbers: 61.10.Dp, 61.70.Ph

/. Introduction

The theory presented by Michalski et al. (1980), in the previous paper, is
illustrated here by some examples of calculations for the 8H(44) structure. The
usefulness of the expressions for Ahs(hs), Aw(h;) and I,.(h;) obtained in the
previous paper is shown. On the basis of these results the corollaries which
were possible to involve are presented in terms of the new method of the
stacking faults analysis. In the calculations some simplifications and
generalizations for nH(n/2 n/2) structures are introduced.

The characteristic symmetry in D,, and N,, (used in the previous paper) and
its connection with the method of the characteristic equation coefficients
calculation and boundary conditions are illustrated.

* Address: Wojskowa Akademia Techniczna, Lazurowa, 01-489 Warszawa, Poland.
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2. Stacking faults in SH(44) structure

Let the succeeding layers in each of three sequences (starting with A, By,
or C,) of a perfect 8H(44) structure be denoted by subscripts j (j = 0. 1. .... 7).
Thus this crystal can be represented by the following layers;

A, B, C, A, B, A. C. B-.
B, C, A, B, C, B. A, C-.
Co A, B, Cy A, C5 B, A-. (1

Thus the 24-types of layers (8-types of 4;,, B;and C)) could be distinguished by
different sequences of the next layers. In the perfect 8H(44) structure starting
with 4, only the following layers A4, B;, C, A; B4., As, Cs and B; with
succession shown by subscripts j can occur. Other types of layers or another
succession of layers can occur only by the formation of stacking faults. To
describe all possible types of faults it is necessary and sufficient to take into
consideration after each layer, one perfect layer or 8 faulted layers. For
example, after the B; - layer the C, -layer can occur followed by no fault
and.A,, ..., A7 - layers followed by different types of faults.

The probability trees for successive layers of the sequence starting with 4,
are presented in Fig. 1. Symbols (1 —g;) mark probabilities of the occurrence of
layers followed by no faults. Symbols ¢, denote probabilities of the occurrence
of i-types of faults. In the brackets Zhdanov's symbols for the corresponding
faults are given. Zhdanov's symbols, used for describing the faults, are more
useful for interpretation and generalization of obtained results than
Jagodzinski's hk symbols used by Prasad and Leie (1970).

3. Recurrence relation for P(m,j)

Following Prasad and Leie (1970) let P(m,,j) be the probability of finding
of an m-th layer with a particular value of j in the sequence having 'k faults of
type 1, “k faults of type 2, ..., 2’k faults of type 23. Let the P(m,,j,’k— 1) be a
probability of that occurrence in the sequence having the number of faults type
"i" less by the one than in the previous sequence. From Fig. 1 it is seen that the
m-layer with subscript j = 0 can be formed in the following nine ways:

— from the (m—I) -layer with j = 7 occurring with probability P@m-\. 7)
followed by no fault with probability (1—g3),

— from the (m-l)-layers with j = 7, 6, 5, 4, 3, 2, 1 and 0 occurring with
probabilities P(m-\, 7, '*/c-1), P(m-1, 6,"k-1), P(m-1, 5, "*k-1), P(m-1, 4, *k-
1), P(m-1, 3, °k-1), P(m-1, 2, k- 1), P(m- 1, 1, ""k- 1) and P(m-1, 0, *k-1)
respectively, followed by fault type 14, 13, 12, 8, 9, 15, 17 and 4 occurring
with probabilities Ol4, 043, OL12, Og, Olo, Os, OL17. and Ol.
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Fig. 1. Probability trees for successive layers of 8H(44) structure
starting with 4,
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The probability P(m, 0) of obtaining the m-th layer with j = 0 is a sum of the
nine above events probabilities and so we have
P(m,0) = (1—g3)P(m—1,T)+o;,P(m—1,7,"*k=1)+a,;P(m—1,6, " k—1)
+o,,P(m—1,5, k=) 4agP(m—1,4, k=) +ogP(m—1,3, °k—1)
+oysP(m—=1,2, k=1 +a;.P(m—=1,1, " Tk—=1)+a,P(m—1,0, *k—1). Q)

Similarly we can express the remaining P(m,j).

4. Discussion of a phase

Stacking faults can (as it is seen in Fig. 1) produce changes of layer
subscripts j and changes of their symbols 4, B or C in relation to those occurring
in the sequences followed by no fault. The phase change of a wave diffracted by
an m-layer can be studied in two steps, fn the first step we only consider the
effect of a change of layer subscript j while preserving its belonging to the
sequence starting at 4,. The change of subscript j with layer phase (the place of a
layer 4, B or C) in sequence starting with 4,, can be expressed as follows:

jolo it |2 |3 a4 |5 l6 |7 |8
) O A A T R WA T
(3)

In the second step we consider the displacements of layers in the plane parallel to

=

the layers of about £s (s = 1/6 [1010]) with respect to the layers having the same
j in the sequence followed by no fault and starting with A4, The effect of the
value j for layers obtained by fault on the layer displacement (0, +s, -S) is
presented in Table .

Let the K, denote the sum of ikj numbers of i-type faults producing layer
displacements with subscript j by +s and K, producing -s displacement. Then, on
the basis of Table I, we have

K, = "ky+ks+*ko+ kot Tky 4 kgt kgt ko + Oky+ kgt Pk 4 kg

+14k1+14k4+15k0+15k3+19k3+19k2+20k6+21k7+21k5+22kl, (4)
K" = lks+2k1+4k0+5k3+7k5+8k0+9k0+9k2+10k6+10k3+12k3+12k4+14k5
+14k0+15k4+15k7+19k7+19k6+20k2+2xk3+21k1+22k5. (5)

The general expression for the m-th layer phase with a given value of j can be
expressed as

D(m, j) = ¢(j)+(K,—K,)go. (6)
To find a recurrence relation for J(m,j), defined by
J(m, j) =Y P(m, j)exp [id(m, j)], 0]
k
we have used the following relationships for phase difference. If a phase

difference between waves diffracted by the m'th and origin layers in a sequence
containing less by one number
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Fig. 2. The 10.1, 11.1 and 20.1 rows of X-ray diffraction photographs (a rotation of
a crystal about the c-axis) of Mn-doping ZnSe (a, b, ¢, d, e and f) and In-doping
ZnS (g) crystals
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TABLE I

The dependence of shift (0, +s, —s) on the value of the subscript j
for layers formed as a result of particular faults

[

Value of | for displacement

Fault tnrougn
+S =S . %

1 |3 |a¢ BG 1 5

2 (2) C, Bs,Cs A, 5 1

3 | (1) |B, A A B, 15
4 (5) A, Co,B, C, 4 0

s |(6) |A,C,B.C,| 7 3

6 (7) A, Cs B, C, 6,2
7 | (8) | AoCs BuCy| 1 5

8 | (9) A,C,,B, Co| 4 0

O |ty | BRA G| % |02

o |8 | GEsa| 2 | e

1 [(33) A; C,B, C, 62
e |6 | B ang o |
3|38 | & ek | 6240
WG| &R v | 0
5B |G et 0o |w

16 | (22) | C. B, CqA, 73
17 (11) B, Ao, A5 B, O4
18 |(111) | A 8. As B 73
19 5%721 & :, X: 367 32 76

20 | (212) | C:B: Cs As| 6 2

20 \JY | Bx k| s |3

22 |(313) | AC, B, G | 1 | S
2 \BiE | 8% & & 2615
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of some fault which involve +s displacement, the phase difference will be equal
to (K,—1—K,)@,. However, for less by one number of some fault, which involve
—s displacement, the phase difference will be equal to (K,—Kg+1)¢,.

5. Recurrence relation for J(m,j)

Let us first consider J(m, 0). According to Prasad and Leie (1970) it can be
expressed in the following manner:

J(m, 0) = Y. P(m,0) exp [i®(m, 0)] = ¥ [(1—gs)P(m—1, 7)+a;,P(m—1,7, "*k—1)
k k

+a,3P(m—1, 6, Pk—1)+a,P(m—1,5, *k—1)+agP(m—1,4,%k—1)
+agP(m—1,3,°k—1)+o;sP(m—1,2, ¥k—1)+oa;,P(m—1,1,"k—1)
+a,P(m—1,0, *k—1)] exp [ipo(K,—K,)]-

Let us rearrange the terms in the above equation to obtain after each ofP(m—I1,j)
on the right side of this equation of adequate exp [i®@(m—1,j)] multiplied by exp
(i9,) = exp (2/3mi) or exp(—i¢,) == exp(—2/3mi). Here we have used equation
(6), in which the first term of @(j) is determined by (3) while the second by Table
L

J(m, 0) = (1—g3) }, P(m—1, 7) exp [igo{1+(K,~K,)}] exp (—ig,)
-+, Y P(m—1,7, k1) exp [igo{1+(K,— K, +1)}] exp (ig,)
+ay3 ), P(m—1, 6, *k—1) exp [ipo{ —1+(K,— K,)}] exp (io)
+oy, Y P(m—1,5, "2 k—1) exp [igo(K,— K,+1)] exp (ig,)
+og Y, P(m—1,4, % k—1) exp [ipo{1+(K,— K,+1)}] exp (ipo)
+ag Y P(m—1,3, ’k—1) exp [ipy(K,— K, +1)] exp (—ipo)
+ays Yy P(m—1,2, Pk—1) exp [igo{ —1+(K,— K,— 1D}] exp (—ip,)
+oy, Y P(m—1,1, "k—1) exp [igo{l+(K,—K,)}] exp (—ipo)
+oy Y P(m—1,0, *k—1) exp [ipo{(K,— K,+1)}] exp (—ig,).
2,

\
Substituting the adequate J(m—1,j) and w = exp (ip,) = exp < 3 ) or w? = exp (=igpg)

2
= exp (— %z) on the right side of the above equation, we have
J(m,0) = (1— g3)0*J(m—1, ) +a ,0J(m—1, T)+ay30J(m—1, 6)

+o,0J(m—1, 5)+agol(m—1, 4)+a,w*J(m—1, 3)
+oys02(m—1,2)+a,0*J(m—1, 1) +a,0’i(m—1,0) . (8)

Similarly one can express the remaining J(m,,j) in terms of the following system
of equations

J(m, j) = f,[J(m—1,0), ..., J(m—1, n—1)]. ©9)
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6. Characteristic equation

Let the solution of (9) have the form

J(m, j) = C;e", (10)

where Cj and p are functions of o’s.
Substituting this solution into (9), we obtain after some rearrangement

— ‘ ol
20— 0 | y,0° oy 50? aow? s 120 %130 (1-gs)w C
! 0 17 15 9 8 12 13 + 4w 0
(1-go)w 2 i 2 2
_’714&)2 K21 W°— Q) Q230 02200 Aq70 &30 Y a1 Cl
z;302 (1=¢g1) zow? 230> AW ) 10w ) C
D= — Q0! 2
13 | + o ow? 20 QE 3 6 9 10! 11 2
2 5 (1-gw P
X200 ) + 1o 010> — 0! Usw %y 50 ) %100 C;
=0 (11)
2 2 w? (I—ga)w ) i 0170 Q15w Ao C
©? -0
Zg %1200 %13 + o402 4 o 5 17 15 of 4
! . :
z2-¢° %3w? %> o w? -8 U1 ®—0 ' Gaz® L2200 C
3 2 1 !_’_“14(0 21 [ 23 22 5
[l L
5 2 2 2 ,(l—gl)w :
Zow? R0 %30W %y W a3 | L20W—0 | U3 Cs
;+a19w i
P >
2:0° %y s zyew? %1002 %120 %150 (1-g2) X100 — C
s 15 16 10 12 18 |+“19w 21 4 7

For non-trivial values of the solutions, C;, the determinant of the first matrix
must vanish. Following the preliminary assumptions of this theory (small o's) we
neglect all the terms which contain products of different ¢;. Thus, the determinant
of the above eight rows of the matrix can be substituted by the sum of 23
determinants calculated simply for particular ¢; # 0. In this manner, the condition

of a non-trivial solution C;can be expressed in terms of the following characteristic
equation

ag0® +a,0" +ag0®+as0’ +a 0t +as0’ +a0* +aj0+ay = 0, (12)

where the coefficients of ¢ (after neglecting the terms having powers of a, greater
than one) one can write

ag =1, a; =0astoy+20,, a¢=oas—20,—403, as= —2o5+205+0,,,
a, = a7—209—20;4, A3 = —203+0g+20,9, Ay = dp—20,,+20,,,
a, = 11—4(113—-2“13, ag = -1+2(ot1+o(2+0€3+tx4+0t5+a6+a7+a3+2tx9

+20y0+ 0y 1 + 202 +200 34 30ty 4+ 200y 5+ 0y g+ Ay 7+ 0lyg + 309+ 00+ 2005 +atz +2053).
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7. Boundary conditions

Boundary conditions will be evaluated in two steps, using the method of Prasad
and Leie (1970). First we obtain the probability w; of finding a layer with a
particular value of j, which passes through an arbitrary region of a crystal
(arbitrary m). From Fig. 1 result the following relationships among particular w;’s

Wo = 0gWo+0ly7W1 0y sWy+ oWy +agWa+ oy W5+ 3w +(1— g3+ 04w,

wy = (1—goFag )Wo+ 0 Wy +0y3Ws+ 0oy Wa oWy +oaWs +a,we + oy W,

Wy = ay3Wo+(1— gy +agg)w; +orows +0op3wa +aeWs +ogWs +ay oWe 0ty W1,

Wy = 0y aWo+ 0 gWy (1= g+ aia)Wy + 05 Wy +osWy + 00y sWs + 0ty gWe + 0y oW,

Wy = AgWo+0ly oWy +ay3Wy+ (1 — g3+ o )Wy +ouwy+ay7Ws +o; sWs+ogws,

Ws = OqWo+03Wy 0wy + oWy + (1 —go 4oy )Wy +0, Ws 403w +ay,w,

We = QgWo+0lgWq +0lyoWa + 0l W3+ 0y 3We+ (1 — gy +ayo)Ws+ 0t gWe + 03w,

Wy = osWo 0ty sWy+ 0l eWy T 0ioWs+0yaWatetygWs+(1— gy + 0y 9)We +0p, ws, 13y

moreover the normalizing condition is

|

On the basis of the symmetry of (13) it can be found that: w, = w,, w; = ws, wy =
wg and w3 = wy. Thus, taking equations (13) and (14) the problem simplifies to
solving 3 linear, nonhomogeneous equations

wiay; = by, 5)

where k, j = 1, 2, 3 and the coefficients a;; and by are linear functions of ¢;
probabilities. Using assumptions about ¢, (¢ are small ones) the solution of (15)
can be written as

w; = Co;+ 2‘ Cijotis ) (16)

wherei=1,2,..,23andj=1, 2, 3.

The terms of C,; (free of ;) and coefficients C;; were found by solving 24 very
simple systems of 3 equations with 3 unknowns. For w; we have obtained the
following values:

wy = ws = § [14+5 (0 +20, 4 303 — oy — 2005 — 30 — 005 — 8ty o — 205 ; — 20ty 5
+20y 5+ 2007+ 0y g — 0o +%p g +%20) ],
wy = W = g [143 (0 +20 — oy —0tg — 205 +0tg — ot + 40t o + 201 1 — 4oty 5 + 20145
=20ty 52017 — 30y + 30050 — 305y + g5 +40053) ],
wy = Wy = g [144 (0tg =200 — a3 —0tq + 205 +atg — 0t + 4oty o+ 205y ~ 2001 3+ 201, 5

=207+ 05— 00+ 01 +%22)], aan
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and using the condition (14)

Wo = W4 = %[1—%(30(1 +20(2+0(3~3OC4-—2065—0£6—-3068+206“—40t12—2a13

+20€15 "'2“17 -—0!18+0620—0c21 +3O£22+40623)].

Then, considering all the possible sequences starting with 4,, B;, C>, 43, By, As,
Cs and B;7 one can directly calculate the values of J(m) = Y w; <exp [i®D(m,j)]>
form=0, 1, ..., 7. From Fig. 1 it can be seen, that

JO) = ¥ w;exp(0) = 1 (18)
ji=o0
and
7
J(1) = ,;0 + wilexp (+igy)+exp (—igy)] = — 3. 19

Further m calculations of J(m) are more complicated because of the increasing
number of terms which are terms of a geometric series. However, it can be seen
that in each of the sequences after the (m~- 1)-layer two layers can occur, whose
phases are both displaced with respect to origin layer by + ¢, (in opposite
directions), or two m-layers of which the first layer will be identical to that of the
origin one and the phase of the second layer displaced by + ¢,. Probabilities of
the occurrence of these layers are expressed by (1 —gj) or g, Moreover, the
phase of the m-layer of the sequence starting with X; (for which the probability of
occurrence is determined by w;) will be contrary to that of the sequence starting
with X, (its probability of occurrence is determined by w;.s = wj. The
probabilities of the occurrence of the (m-l)-layer are in these sequences equal.
From this results the possibility of adding in <exp [i®(m,j)]> the terms describing
sequences starting with X; and Xj.,. Therefore for each of sequences the last
factor in <exp [iD(m,j)]|> will be expressed by one of the following terms

(1—g;) [exp (Ligo)+exp (Figo)]+g;lexp (Ligo)+exp (Figo)] = —1,
(1—g;) [exp (£ido)+exp (Fipo)]+g;[exp (0)+exp (0)] = 3g;—1,
(1—g;) [exp (0)+exp (0)] + g,[exp (£ ipo) +exp (Figo)] = 2—3g;. (20)
Using the above one can give the method of expressing the J(m) by ¢; which

considerably simplifies the calculations, especially for large m. Let us write J(m)

as follows
3

J(m) = 'Zo w;T;, (21)
j=
where T; are o; functions determined as
T;=(1—g)Sjs1+8;Sjs2+8] "Sj4a for j=0,3,
T;=(1—8)S;j+1+8;Sj-1+8; ""Sj42+g;"S;, for j=1, ~
T",'=(l_gj)Sj.;.l“f'g;Sj_l‘*‘g;ASj—_.2+gJ{\AAS;+1, for _]=2 (22)



732

Denotations of ng ng , gjw are in agreement with Fig. 1. The sign "-" upwards
denotes the transition to second row in probability trees in Fig. 1. Because we
want to take into consideration in J(m) terms with first power of a; only, it is
sufficient to determine free terms (without of ;). According to (20) they can
take values -1 or 2 depending on the last factor in <exp iF(m,)]> for the
considered sequence. However, the terms standing at the (I —g;) must be
determined with an accuracy to the first power of a;. We proceed by analogy to
T;. For example

Sjr1=1-g;01Rj o+ 874 1Ry 3+ 8/ 1R 43, (23)

for j+1 =0, 3.

Here it is necessary to determine R;+, exactly, and free terms in Rj+3 and R+ 3.
After finding the exact value to the last factor (1—gj+u-2), we successively
substitute terms calculated to the corresponding (1 —g) up to Tj. In this way we
express the remaining J(m) by a;

J(2) = 35 [ —4+3(at; + 200, + 3003 — 0ty — 205 — 3otg — bty — Satg + 8oty o+ 20,y +4oty,

+200 5+ 140 s + 4oty g+ 60017+ 90t g+ 160 g+ 13005, + S0y, +12055) ], (24)
J(3) = ?17 [8+6(—-OL1—20(2-—a3+0(4+4a5+3065 +40€7+50t8——4o:9—60£10—-4061]
—200y3— 60y s — 4oty g — 20017 — 30015 — 8ty o — Soty0 — 35 “"30522“8“23)]’ (25)

J(4) = 55 [ —4+3(0r + 60ty — Sauz + 30ty — 60ts — 3og — dot; — Sarg — dotg + 8y o + 2014
—dory, + 10003+ 40ty 4 — 600y 5+ 12000 6 — 2001 7+ 0y g+ 300 — 30a +020 +4053)],  (26)
J(5) = —315[8+6(—7a1—40:2+5a3+5a4+6a5+5cx6+5a7+5a8 +dag— 60,0 — 62, ,

+ 120015 + 2013 — 200 4 — S0ty s — Aoty 6+ 200y 7 + 200 g — g0+ 01y — 3%z —40033) ], (27)
J(6) = 55 [ —4+43(21o; — 60y — Qa3 — Sty + 65 + Yot + 8or7 + Torg — dotg + 16014
+2200;; — 1601, 5 — 100, 3+ 160, 4 — 100, s — 4oty g — 2047 — 110ty g —doty o + 3050 — 3005

+ 50(22 +80£23)], (28)
J(7) = "8“ ["4+3(7a2 +20(3+7d4+20(5 +2a6+2a7+20(8+5@9+70110+9O(12 + 140{]3
A 70ty g+ 500y 5+ 4oty g 4oty 7+ 80ty g + Tty g+ 30000 + Toty + 3055+ 60t53) . (29)

8. Estimation of the influence of stacking faults on the peak shifts, peak
broadening and change of the peak maxima intensity

Following expression (2) of the previous paper the diffracted intensity from
a faulted 8H(44) structure can be written as

s 8 3

: : mn
2 N,, cos — h,
4

\ -
I(hy) = v* |1+ 22 . (30)
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TABLE II
The effect of stacking faults on the shifts Akh;s(h;), broadenings Aw(h;) and changes
in peak maxima intensity /,..(h3) for different single crystal reflexions

zrde- N, ahfa] Aw[a] F2lnas[ 5 |
symbold TN |gmlgmet |amiz|amzsld am |am24 lvdam +3 kvuam BM £ 1 lvdems b
3 |ai|o |+ |vh |+& | o| # |REF + o<+ |+ F558] % p1sH 2
2 lazlolidn|o |[tHhilol#| & |¥]| & '17’1’2%&247%%0'21%
1 las|o PR |+% |2 | o] o FG2R £ |¥G2 4 | — |325| 3 4 1%
5 |adlo|*% [h 1% | o| # Roud ¥ R+ | ¥ 3
6 |asfo|m|o|shmlol#| % |[+]| # |[#|% 2 7
7 |as|o | 15+ || o] o Kbl # B2 4 |— 5] %
g |la,lolojo|lolol#| + |#]| *+ |$|5 3 £7)
9 |a,|o |+ |%h (% | of ¥ |%Towd & Kowl|+ | % ra
31 |as|loj o | oo |o|R| & [#]| % |®|% Z) 7% 7%
32 |aw| 0 % |4 |& |o| £|F6<8 4 Foul g |4, i 5
33 |anlo|th | o |5k |o|o| & |#| # |o|— 2 —
51 laplolify | 0 |2F |o| €| # |&| + | 4|2 3 7%
52 O’f:{Of‘ﬁ: fﬁ'f oomﬁm#~ '1% 5%
53 lau/o|0 |0 |0 |o|&| # || & |®|A 7 2%
21 |aslo 'F |34 [*% | o] € [Fo4B 4 [FonTd 4 |51 7% %
22 a0 |0 |0 |0 |0olo| # (o] # |o|— — —
11 lanmlo|id | o | |olo]| £ |#]| # |o]|— 7% -
11 |awlo % |5 % | 0|0 K629 £ G2l | — * %
21 lanlo| 0| 0| 0 |0|F #| & |#|% % 2
212 |azdo K |2k | |0 | F f 42 + |5 2
311 |anlo K |5 [Tk |o| E Ko T & £ | 3
313|a o |'R |k TR |0 | # W4T | + 7% 2
312 anlp % |o | |ofo |+ |o|- —
where
Dy = (14+a%+ ... +ad), D, =2a,+a,a6+ ... +a,ap), ..., D= 2(a,+a,a,),

Dg=2a, and No = a;J(1)+as[J(2)+a,J(1)]+as[J(3)+a:J(2)+asJ(D)]+ ...
+a,[J(D+a.J(6)+ ... +aJ()]—a5, Ny = agJ()+as[J2)+aJ(D]+ ...
+ao[J(D+azJ(6)+ ... +a,J(D]+J1)+a,[J()+aJ()]+ ...
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+a2[J(7)+a7J(6)+ v +02J(1)]_a1a05 ] N6 = aiJ(1)+ao[J(2)+a7J(1)]
+[J(O)+aJ(5)+ ... +asJ(V)]+a;[J(7)+a,J(6)+ ... +a,J(1)]—agay,
N, = alJ()+[J(N)+aJ(6)+ ... +aJ(1)]—a,a, Ng= —a,,

a; are coefficients of a characteristic equation expressed by ¢; in point (6) and
J(m) are boundary conditions expressed by ¢; in point (7).

Following expressions (9), (11) and (15) of the previous paper (Michalski et
al. (1980)) the peak shifts Ahs, (h3), peak broadening Aw(h;) and changes of the
peak maxima intensity /,,..(%3) have the form

8
L . [ mn
Ahy(hs) = 53 mD,, sin Y hs ), (31
- m=0
8
2 Z N,, cos (—n—lf h3>
4
Imax(h3) = 8 == —_—
mmn mmn . [(mn mn 21 mmn
Dm Cos Th:, - TAh:;SlH Th:, - —4—Ah3 5 COS —Z—h:;
m=0 ‘
(33)
2 2
1 ‘
w(h3) = - JZ D, [cos (%[ h3)— in; Ahy sin <'%t h3>-—(T4f Ah3> 3 cos (? h3)] R
) (32

where h; = 8M, 8M= 1, £2, +£3, £4. The results of calculations are presented in
Table II.

9. Analysis of stacking faults in the 8H(44) crystals

Table II presents 16 equations with experimentally determined values of
Ahs(hs), Aw(hsz) and 1,,..(h3) for different single crystal reflexions (h; = 8M, 8M+
1, £2, £3, +4). There are 23 unknown ¢; probabilities of the occurrence of
particular types of faults. Thus, it is not possible to determine the probabilities ¢
for the examined structure by the solution of a general system of equations. One
can find the. expressions for two more experimentally observable parameters
from peak asymmetry measurements. Changes in the integrated intensity can be
used as a measure of faulting instead of changes in the peak maxima. However,
(following Pandey and Krishna (1976)) the peak asymmetry and changes in
integrated intensities are usually too small to be estimated experimentally with
sufficient accuracy. Thus, peak shifts and the half width seem to be the best
measures of faulting. The initial elimination of some type of faults based on the
consideration of the energy of SFE-stacking faults proposed by Pandey and
Krishna (1976) for the structure 6H(33) is also impossible for the 8H(44)
structure. There is no basis to justify the assumptions, based on the statistics of
the examined structures, about the probabilities of the occurrence of some types
of faults.
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It can be seen (see Table II) that the information about the type of faults
occurring in crystals is contained in the presence or absence of peak shifts
Ahs(hs) for different reflexions and in the sign of the peak shifts. On this basis
all the possible diffraction patterns can be divided into 13 essential types
(obtained as on effect of different combinations of the above parameters)
differing from each other by qualitative features. For six of them we can assign
the single types of fault (22), (33), (1), (7,) (6) and (3) and for the remaining we
can assign the group of non distinguishable faults (11)-(312), (52)-(111), (8)--

€2))

TABLE II1
The essential diffraction patterns from 8H(44) structures with stacking faults
Description of the diffraction  pattern Zhdanov’s
sign of Ahs(h;) symbols
AW (h;) Ahy (hy) for h, equalto] of faults
8Mt1 218M+3
AW(8M8M2#4)0 .
’ [‘ —
W BM#143)£0 Nhy(BMBMHIESI3HY)=01 O | O | O (22)
WVIBM8M*)=0 |aheMeM2+s)=0| T | 0 | | (33)
AW(BMH1E2+3)#0Ahs (8M*123) +# O | 7 | o | 2 (41) (312)
| i1zl m
AWEBM) =0 |AhBMBMT4)=0 [— P (7)
+ | Z +
AW[BME1+2+3%)0| Ahy(8M+ 142+3) £ O
s 22 |52, m)
nhiBMBME2:3:4) =0| O | O | O |B)31)53)(211)
Ah{BMBME2+4)=0| * | O | + (6)
AhBME123)+ 0 |5 |0 | £ | (2,651
NVBMBMHR213H4MO I I
Ah,(BMEM* 4)=0 F——1— 3
T LE L 1 1(9432)
- |abBME1E2#3)#0 [ 2 | % | T |(29.(313)
I 5)e2).31)
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~(53)-(211), (2)-(51), (9)-(32), (21)-(313) and (5)-(212)-(311). The description
of the main diffraction patterns is presented in Table IIL.

If X-ray diffraction photographs of the examined crystals are exactly
adequate to one of the 13 main diffraction patterns from Table III, the analysis
of the faults in these crystals is simple. To estimate ¢; probabilities it is
sufficient to measure one of the parameters Aw(hs), Ahs(hs) or Ly.(h3) and to
solve one of the 16 equations with one unknown ¢;. It can be seen that for non
distinguishable faults the relations 2007= 03, O3 = 20618, 0 2=200 Oy = 20(8,
o5 = 200, 0 = 20620:2064, 2067: Oy =0y = 09 Are valid. In the other cases it
is necessary to settle down from which of 13 main diffraction patterns there are
the characteristic features simultaneously observed on the X-ray diffraction
photographs. We can get the estimation of ¢; - probabilities by solving
adequate numbers of equations.

Based on the above method the analysis of stacking faults in 8H(44)
structures of ZnSe doping Mn and ZnS doping In crystals was made. Based on
the qualitative characteristic features of X-ray diffraction photographs (Fig. 2)
(the great peak broadening of reflexions with 43 = 8M=l, 3, perishable peak
broadening of reflexions with 43 = 8M, 8M+2, +4, absence of peak shifts for
reflexions with 43 = 8M, 8M+2, +4 and sign + of peak shifts for reflexions with
h; = 8M*1 and (-1)* for h; == 8M=3) the occurrence of (22)-type faults
principially and (33) and (6)-perishable type faults was found. The following
parameters were measured

Sample | a | b | ¢ | d | e | £ | g
Aw(h; =2) 0.05 0 0 0.05 0 0.05
Aw(hz:=3) 0.2 0.1 0.25 0.3 0.1 0.3 0.5
Aw(h; = 4) 0.05 | 0.05 | 0.05 | 0.05 | 0.05 0 0

3 equations are necessary

1 4
AWEBM+2) = —as+ — aqy,
n T

2 2 4
AWBM +3) = —oas+ —ay; + — %y
n s n

3
Aw(BM +4) = — as.
7

Probabilities of ¢; occurrence of particular types of faults are

Zdanov’s | Sample
Symbol a b c d e f g
of fault o
(6) o5 0.05 | 0.05 | 0.05 | 0.05 | 0.05 0 0
(33) 011 0.03 0 0 0 0.03 0 0.04
(22) 6 0.12 | 0.05 | 0.17 | 0.21 0.04 | 024 | 0.37
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and hexagonalities of examined crystals

SO -

sample|a|b|c|d|e|f|2
ap | 0.28 | 0.26 | 0.29 | 0.20 | 0.26 | 0.30 | 0.35
o T T & T T 77
ST EREE
s | | l |
o | |64 (44)+ (33)
sk | | l | | |
- l
5 I | l |
4—' I l I '
3k | | | [
2 | | _‘, ] I
SoAl 1
f
|

T T 1T 17 T T 1

Diffracted intensity (arbitrary units)

——,—,— e e | T T

T T T T 17 1T T 71

DN U ND OISO wNWH Oy > ©

Fig. 3. The distribution of 1,9, intensity obtained by model analysis

To illustrate the peak shifts Ahs(h;), peak broadening Aw(h;) and change in the
peak maxima intensity /,,..(%3) and to compare them with the method of model
analysis (Patosz (1977)), the distribution of /;,; intensity obtained by model
analysis is presented in Fig. 3.
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10. Discussion

The complete characterization of all the possible X-ray diffraction patterns
involving stacking faults in the 8H(44) structure was presented. Using the
above method one can also similarly characterize 10H(55), 12H(66) and other
nH(n/2 n/2) structures, which are most often met in 4”B"” compounds. In this
method the information about the type of fault is reached with minimum of
work. Such characteristics although qualitative, can often be useful for stacking
faults. Moreover, the accuracy of quantitative evaluation of fault content
depends on the accuracy of measuring of Ahs(h;), Aw(hs) or I,..(h;) param-
eters. These last ones can be different depending on the actual necessity, the
apparatus possibility and the time devoted to investigations. It is an important
feature of our method with respect to others given e.g. in Palosz (1977),
Farhas-Jahnke (1973) and Kakinoki and Komura (1965).
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