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X-RAY DIFFRACTION FROM THE 8H(44) STRUCTURE 
CONTAINING STACKING FAULTS 
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Institute of Technical Physics, Military,Academy of Technology, Warsaw*  

( Receired September 29, 1980; revised version received December 16, 1980) 

The influence of all possible 23-types of faults in the 8H(44) structure on peak broadening ∆w{h3}, 
peak shifts ∆h3{h3}, and changes in the intensity of the peak maxima was estimated for single crystal 
reflexions with h3 == 8M, 8M±1, ±2, ±3, ±4. The values of ∆h3{h3},,  ∆w{h3} and Imax(h3) were calculated 
using the same expressions as in the previous paper. The coefficients ai of  the characteristic equation and 
the boundary conditions, J(m), were calculated by the Prasad and Leie method, which was adopted in  
this paper  to the  8H(44) structure and other long periodic nH(n/2 n/2)-type structures. On the basis of 
the results obtained, the new method of stacking faults analysis in the above structures was presented. 
The results for 8H(44) structure was compared with the theoretical intensity distributions, I10.l which we 
obtained by the model analysis method. Moreover, some examples of the stacking faults analysis in the 
ZnSe doping Mn crystals with 8H(44) structure were presented. 

PACS numbers: 61.10.Dp, 61.70.Ph 

/. Introduction 
 

The theory presented by Michalski et al. (1980), in the previous paper, is 
illustrated here by some examples of calculations for the 8H(44) structure. The 
usefulness of the expressions for ∆h3(h3), ∆w(h3) and Imax(h3) obtained in the 
previous paper is shown. On the basis of these results the corollaries which 
were possible to involve are presented in terms of the new method of the 
stacking faults analysis. In the calculations some simplifications and 
generalizations for nH(n/2 n/2) structures are introduced. 

The characteristic symmetry in Dm and Nm (used in the previous paper) and 
its connection with the method of the characteristic equation coefficients 
calculation and boundary conditions are illustrated. 
_____________________________________________________________________________________ 
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2. Stacking faults in 8H(44) structure 
 

Let the succeeding layers in each of three sequences (starting with AO, BO  

or Co) of a perfect 8H(44) structure be denoted by subscripts j (j = 0. 1. .... 7). 
Thus this crystal can be represented by the following layers; 

 
Thus the 24-types of layers (8-types of Aj,, Bj and Cj) could be distinguished by 
different sequences of the next layers. In the perfect 8H(44) structure starting 
with Ao only the following layers Ao, B1, C2, A3, B4., A5, C6 and B7 with 
succession shown by subscripts j can occur. Other types of layers or another 
succession of layers can occur only by the formation of stacking faults. To 
describe all possible types of faults it is necessary and sufficient to take into 
consideration after each layer, one perfect layer or 8 faulted layers. For 
example, after the B1 - layer the C2 -layer can occur followed by no fault 
and.Ao,…, A7 - layers followed by different types of faults. 

The probability trees for successive layers of the sequence starting with Ao 
are presented in Fig. 1. Symbols (1 —gj) mark probabilities of the occurrence of 
layers followed by no faults. Symbols αi, denote probabilities of the occurrence 
of i-types of faults. In the brackets Zhdanov's symbols for the corresponding 
faults are given. Zhdanov's symbols, used for describing the faults, are more 
useful for interpretation and generalization of obtained results than 
Jagodzinski's hk symbols used by Prasad and Leie (1970). 

3. Recurrence relation for P(m,j) 

Following Prasad and Leie (1970) let P(m,,j) be the probability of finding 
of an m-th layer with a particular value of j in the sequence having 1k faults of 
type 1, 2k faults of type 2, ..., 23k faults of type 23. Let the P(m,,j,ik— 1) be a 
probability of that occurrence in the sequence having the number of faults type 
"i" less by the one than in the previous sequence. From Fig. 1 it is seen that the 
m-layer with subscript j = 0 can be formed in the following nine ways: 

— from the (m—l) -layer with j = 7 occurring with probability P(m-\. 7) 
followed by no fault with probability (1—g3), 

— from the (m-l)-layers with j = 7, 6, 5, 4, 3, 2, 1 and 0 occurring with 
probabilities P(m-\, 7, 14/c-l),   P(m-1, 6,13k-l), P(m-l, 5, 12k-l), P(m-1, 4, 8k-
1), P(m-1, 3, 9k-1), P(m-1, 2, 15k- 1), P(m- 1, 1, 17k- 1) and P(m-1, 0, 4k-1) 
respectively, followed by fault type 14, 13, 12, 8, 9, 15, 17 and 4 occurring 
with probabilities α14, α13, α12, α8, α9, αl5, α17. and α4. 

 



 

 

Fig. l. Probability trees for successive layers of 8H(44) structure 
starting with Ao 
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The probability P(m, 0) of obtaining the m-th layer with j = 0 is a sum of the 
nine above events probabilities and so we have 

 
Similarly we can express the remaining P(m,j). 

4. Discussion of a phase 

Stacking faults can (as it is seen in Fig. 1) produce changes of layer 
subscripts j and changes of their symbols A, B or C in relation to those occurring 
in the sequences followed by no fault. The phase change of a wave diffracted by 
an m-layer can be studied in two steps, fn the first step we only consider the 
effect of a change of layer subscript j while preserving its belonging to the 
sequence starting at AO. The change of subscript j with layer phase (the place of a 
layer A, B or C) in sequence starting with AO, can be expressed as follows: 

 
j 0 1 2 3 4 5 6 7 8 
F(j) 0 fo - fo 0 fo 0 - fo f 0 

(3)  
In the second step we consider the displacements of layers in the plane parallel to 
the layers of about ±s (s = 1/6 [1010]) with respect to the layers having the same 
j in the sequence followed by no fault and starting with AO. The effect of the 
value j for layers obtained by fault on the layer displacement (0, +s, -S) is 
presented in Table I. 

Let the Kp denote the sum of ikj numbers of i-type faults producing layer 
displacements with subscript j by +s and Kn producing -s displacement. Then, on 
the basis of Table I, we have 

 
The general expression for the m-th layer phase with a given value of j can be 
expressed as 

 
To find a recurrence relation for J(m,j), defined by 

 
we have used the following relationships for phase difference. If a phase 
difference between waves diffracted by the m'th and origin layers in a sequence 
containing less by one number 
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Fig. 2. The 10.l, 11.l and 20.l rows of X-ray diffraction photographs (a rotation of 
a crystal about the c-axis) of Mn-doping ZnSe (a, b, c, d, e and f) and In-doping 

ZnS (g) crystals 
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TABLE I 

The dependence of shift (0, +s, —s) on the value of the subscript j 
for layers formed as a result of particular faults 
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of some fault which involve +s displacement, the phase difference will be equal 
to (Kp—1—Kn)φo. However, for less by one number of some fault, which involve 
—s displacement, the phase difference will be equal to (Kp—Kn+l)φo. 

5. Recurrence relation for J(m,j) 
 

Let us first consider J(m, 0). According to Prasad and Leie (1970) it can be 
expressed in the following manner: 

 

Let us rearrange the terms in the above equation to obtain after each ofP(m—l,j) 
on the right side of this equation of adequate exp [iΦ(m—1,j)] multiplied by exp 
(iφo) = exp (2/3πi) or exp(—iφo) == exp(—2/3πi). Here we have used equation 
(6), in which the first term of Φ(j) is determined by (3) while the second by Table 
I. 

Similarly one can express the remaining J(m,,j) in terms of the following system 
of equations 
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6. Characteristic equation 

Let the solution of (9) have the form 

 

where Cj and ρ are functions of α's. 
Substituting this solution into (9), we obtain after some rearrangement 

 

For non-trivial values of the solutions, Cj, the determinant of the first matrix 
must vanish. Following the preliminary assumptions of this theory (small α's) we 
neglect all the terms which contain products of different αi. Thus, the determinant 
of the above eight rows of the matrix can be substituted by the sum of 23 
determinants calculated simply for particular αi ≠ 0. In this manner, the condition 
of a non-trivial solution Cj can be expressed in terms of the following characteristic 
equation 

 

where the coefficients of αj (after neglecting the terms having powers of a, greater 
than one) one can write 
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7. Boundary conditions 
 

Boundary conditions will be evaluated in two steps, using the method of Prasad 
and Leie (1970). First we obtain the probability wj of finding a layer with a 
particular value of j, which passes through an arbitrary region of a crystal 
(arbitrary m). From Fig. 1 result the following relationships among particular wj’s 

 

moreover the normalizing condition is 

 
On the basis of the symmetry of (13) it can be found that: wo = w4, w1 = w5, w2 = 
w6 and w3 = w7. Thus, taking equations (13) and (14) the problem simplifies to 
solving 3 linear, nonhomogeneous equations 

 

where k, j = 1, 2, 3 and the coefficients akj and bk are linear functions of αi 
probabilities. Using assumptions about αi, (αi are small ones) the solution of (15) 
can be written as 

 

where i = 1, 2, ..., 23 and j = 1, 2, 3. 
The terms of Coj (free of αi) and coefficients Cij were found by solving 24 very 
simple systems of 3 equations with 3 unknowns. For wj we have obtained the 
following values: 
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and using the condition (14) 

 

Then, considering all the possible sequences starting with Ao, B1, C2, A3, B4, A5, 
C6 and B7 one can directly calculate the values of J(m) = ∑wj <exp [iΦ(m,j)]> 
for m = 0, 1, ..., 7. From Fig. 1 it can be seen, that 

 
and 

 

Further m calculations of J(m) are more complicated because of the increasing 
number of terms which are terms of a geometric series. However, it can be seen 
that in each of the sequences after the (m~- l)-layer two layers can occur, whose 
phases are both displaced with respect to origin layer by ± φo (in opposite 
directions), or two m-layers of which the first layer will be identical to that of the 
origin one and the phase of the second layer displaced by ± φo. Probabilities of 
the occurrence of these layers are expressed by (1 —gj) or gj, Moreover, the 
phase of the m-layer of the sequence starting with Xj (for which the probability of 
occurrence is determined by wj) will be contrary to that of the sequence starting 
with Xj±4 (its probability of occurrence is determined by wj±4 = wj). The 
probabilities of the occurrence of the (m-l)-layer are in these sequences equal. 
From this results the possibility of adding in <exp [iΦ(m,j)]> the terms describing 
sequences starting with Xj and Xj±4. Therefore for each of sequences the last 
factor in <exp [iΦ(m,j)]> will be expressed by one of the following terms 

 

Using the above one can give the method of expressing the J(m) by αi which 
considerably simplifies the calculations, especially for large m. Let us write J(m) 
as follows 

 

where Tj are αi functions determined as 
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Denotations of gj
^ gj

^^ , gj
^^^ are in agreement with Fig. 1. The sign "-" upwards 

denotes the transition to second row in probability trees in Fig. 1. Because we 
want to take into consideration in J(m) terms with first power of ai only, it is 
sufficient to determine free terms (without of ai). According to (20) they can 
take values -1 or 2 depending on the last factor in <exp iF(m,j)]> for the 
considered sequence. However, the terms standing at the (1 —gj) must be 
determined with an accuracy to the first power of ai. We proceed by analogy to 
Tj. For example 

 

for j+1 = 0, 3. 
Here it is necessary to determine Rj+2 exactly, and free terms in Rj+3 and R-

j+ 3. 
After finding the exact value to the last factor (1—gj+m-2), we successively 
substitute terms calculated to the corresponding (1 —g) up to Tj. In this way we 
express the remaining J(m) by ai 

 
8. Estimation of the influence of stacking faults on the peak shifts, peak 

broadening and change of the peak maxima intensity 
Following expression (2) of the previous paper the diffracted intensity from 

a faulted 8H(44) structure can be written as 
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TABLE II 
The effect of stacking faults on the shifts ∆h3(h3), broadenings ∆w(h3) and changes 

in peak maxima intensity Imax(h3) for different single crystal reflexions 

 

where 
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ai are coefficients of a characteristic equation expressed by αi in point (6) and 
J(m) are boundary conditions expressed by αi in point (7). 

Following expressions (9), (11) and (15) of the previous paper (Michalski et 
al. (1980)) the peak shifts ∆h3,(h3), peak broadening ∆w(h3) and changes of the 
peak maxima intensity Imax(h3) have the form 

 
where h3 = 8M, 8M± 1, ±2, ±3, ±4. The results of calculations are presented in 
Table II. 

9. Analysis of stacking faults in the 8H(44) crystals 
 

Table II presents 16 equations with experimentally determined values of 
∆h3(h3), ∆w(h3) and Imax(h3) for different single crystal reflexions (h3 = 8M, 8M± 
1, ±2, ±3, ±4). There are 23 unknown αi probabilities of the occurrence of 
particular types of faults. Thus, it is not possible to determine the probabilities αi 
for the examined structure by the solution of a general system of equations. One 
can find the. expressions for two more experimentally observable parameters 
from peak asymmetry measurements. Changes in the integrated intensity can be 
used as a measure of faulting instead of changes in the peak maxima. However, 
(following Pandey and Krishna (1976)) the peak asymmetry and changes in 
integrated intensities are usually too small to be estimated experimentally with 
sufficient accuracy. Thus, peak shifts and the half width seem to be the best 
measures of faulting. The initial elimination of some type of faults based on the 
consideration of the energy of SFE-stacking faults proposed by Pandey and 
Krishna (1976) for the structure 6H(33) is also impossible for the 8H(44) 
structure. There is no basis to justify the assumptions, based on the statistics of 
the examined structures, about the probabilities of the occurrence of some types 
of faults. 
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It can be seen (see Table II) that the information about the type of faults 

occurring in crystals is contained in the presence or absence of peak shifts 
∆h3(h3) for different reflexions and in the sign of the peak shifts. On this basis 
all the possible diffraction patterns can be divided into 13 essential types 
(obtained as on effect of different combinations of the above parameters) 
differing from each other by qualitative features. For six of them we can assign 
the single types of fault (22), (33), (1), (7,) (6) and (3) and for the remaining we 
can assign the group of non distinguishable faults (11)-(312), (52)-(111), (8)--
(31) 

TABLE III 
The essential diffraction patterns from 8H(44) structures with stacking faults 
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~(53)-(211), (2)-(51), (9)-(32), (21)-(313) and (5)-(212)-(311). The description 
of the main diffraction patterns is presented in Table III. 

If X-ray diffraction photographs of the examined crystals are exactly 
adequate to one of the 13 main diffraction patterns from Table III, the analysis 
of the faults in these crystals is simple. To estimate αi probabilities it is 
sufficient to measure one of the parameters ∆w(h3), ∆h3(h3) or Imax(h3) and to 
solve one of the 16 equations with one unknown αi. It can be seen that for non 
distinguishable faults the relations 2α17 = α23, α13 = 2α18, α12 = 2α2 α10 = 2α8, 
α15 = 2α22, α21 = 2α20=2α4, 2α7 = α9 = α14 = α19 are valid. In the other cases it 
is necessary to settle down from which of 13 main diffraction patterns there are 
the characteristic features simultaneously observed on the X-ray diffraction 
photographs. We can get the estimation of αi - probabilities by solving 
adequate numbers of equations. 

Based on the above method the analysis of stacking faults in 8H(44) 
structures of ZnSe doping Mn and ZnS doping In crystals was made. Based on 
the qualitative characteristic features of X-ray diffraction photographs (Fig. 2) 
(the great peak broadening of reflexions with h3 = 8M±l, ±3, perishable peak 
broadening of reflexions with h3 = 8M, 8M±2, ±4, absence of peak shifts for 
reflexions with h3 = 8M, 8M±2, ±4 and sign ± of peak shifts for reflexions with 
h3 = 8M±1 and (-1)± for h3 == 8M±3) the occurrence of (22)-type faults 
principially and (33) and (6)-perishable type faults was found. The following 
parameters were measured 

 
3 equations are necessary 
 

 
 

Probabilities of αi occurrence of particular types of faults are 
 
 
Zdanov’s 
Symbol 
of fault 

Sample 
 

αi 

 
a 

 
b 

 
c 

 
d 

 
e 

 
f 

 
g 

(6) α5 0.05 0.05 0.05 0.05 0.05 0 0 
(33) α11 0.03 0 0 0 0.03 0 0.04 
(22) α16 0.12 0.05 0.17 0.21 0.04 0.24 0.37 

 
 
 

Sample a     |    b c d e f g 
∆w(h3 = 2) 0.05 0 0 0 0.05 0 0.05 

∆w(h3 = 3) 0.2 0.1 0.25 0.3 0.1 0.3 0.5 
∆w(h3 = 4) 0.05 0.05 0.05 0.05 0.05 0 0 
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and hexagonalities of examined crystals 
 
 

sample a b c d e f g 
ah 0.28 0.26 0.29 0.20 0.26 0.30 0.35 

 
 

 
 

Fig. 3. The distribution of I10.l intensity obtained by model analysis 

To illustrate the peak shifts ∆h3(h3), peak broadening ∆w(h3) and change in the 
peak maxima intensity Imax(h3) and to compare them with the method of model 
analysis (Pałosz (1977)), the distribution of I10.l intensity obtained by model 
analysis is presented in Fig. 3. 
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10. Discussion 
 

The complete characterization of all the possible X-ray diffraction patterns 
involving stacking faults in the 8H(44) structure was presented. Using the 
above method one can also similarly characterize 10H(55), 12H(66) and other 
nH(n/2 n/2) structures, which are most often met in AIIBVI compounds. In this 
method the information about the type of fault is reached with minimum of 
work. Such characteristics although qualitative, can often be useful for stacking 
faults. Moreover, the accuracy of quantitative evaluation of fault content 
depends on the accuracy of measuring of ∆h3(h3), ∆w(h3) or Imax(h3) param-
eters. These last ones can be different depending on the actual necessity, the 
apparatus possibility and the time devoted to investigations. It is an important 
feature of our method with respect to others given e.g. in Pałosz (1977), 
Farhas-Jahnke (1973) and Kakinoki and Komura (1965). 
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