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DYNAMICS AND ADIABATIC POTENTIAL OF IMPURITY DEFECTS IN NEAR-SURFACE 
LAYER OF AB2-TYPE STRUCTURES  

PART I. SURFACE VIBRATION-MODES OF CRYSTALS WITH FLUORITE AND 
ANTIFLUORITE STRUCTURE 

S. KACZMAREK and J. KAPELEWSKI (WARSZAWA) 

1. Introduction 

Crystals of fluorite structure (antifluorite being a fluorite form with reverse sublattice-
valency), play a major role both in practice of quantum electronics and in a number of 
fields of physics as well as technology of solid bodies. 

The variety of applications of this type crystals is linked with the fact that the class of 
crystals under consideration includes, except for the molecular bonds, all the other types 
of bonds. In fact, besides the media of the MeF2 type (Me — bivalent metal), there 
occur here numerous compounds of electropositive bivalent elements with tetravalent 
negative ones, e.g. Mg2Si, Mg2Ge, intermetallic compounds, e.g. PtAl2, PtGe2 and even 
alloys, e.g. Fe3Al. The wide applicability of wafers, among other things, in 
electrophonics and physics of admixtured crystals is one of the reasons for the 
immediate interest of the problem of dynamics of the near-surface layer and, in 
particular, the surface vibration-modes of this type crystals. In the case of the above 
mentioned problems the thermal phonon-spectrum is one of the chief factors that 
determine the statistical and thermodynamic parameters of crystals, as well as, through 
the characteristic and the form of the spectrum line, the spectroscopic properties of 
crystalline impurities. In view of the applications it is essential to explore the region of 
the shorter waves as well. 

The aim of the present study is to analyze this problem for the case of the surface 
(110), on the base of a model of central and localized interactions [6]. The application 
of the above model to the construction of the dynamic matrix, on the one hand, all 
properties of the phonon spectrum, resulting from the spatial symmetry of the medium, 
to be formulated, ensuring thereby the generality of the,considerations concerning the 
structure, as results from the very assumption, and not a concrete crystal. On the other 
hand, this application is justified by the nature of the actual action of the vast majority 
of the representatives of the class of media under consideration, minimizing, at the same 
time, the number of the tabulation parameters. For the cases, wherein the essential role 
in the bonds is played by their ionic component (MeF2-series), the model used here, 
generally speaking, does not apply. The surface vibration-modes of the MeF2-series 
crystals, are studied in the paper [4], in the description of a continuous dielectric 
medium. It should be emphasized, 
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however, that even for this type media, the results obtained in the present paper, 
are adequate to the region of higher values of k~ (among other things, to the 
spectral range of thermal phonons) and this region, as is known, can always be 
modelled by the effective local potential. 

2. Equations of Motion and Boundary Conditions 

The crystal lattice of the structure AB2 under consideration, has the symmetry 
of the spatial group O5

h. The atoms A (structural equivalents of Ca in fiuorite) 
form a plane-centered cubic lattice, whereas the atoms B (corresponding there to 
the lattice points F) — a plain cubic lattice with constant lattice twice less, in 
such a way, that the ambiance B of each lattice point A forms a cube, at the 
centre whereof is A, while each lattice point B is surrounded tetrahedrally by four 
atoms A (Fig. 1). Such a configuration causes the atoms B of the unit cell of the 
crystal to form two translatorily unequivalent sub-lattices (B1, B2) the ambiances 
whereof penetrate into each other through the operation of inversion. 

 
FIG. 1. Structure AB2, lattice points 1-6 cone. A;    FIG. 2. AB2 structure cross-section in zy plane. 
1’-8' lattice points B (wherein 1’, 3’, 5’, 7’- sublattice 
                 B1; 2’, 4’, 6’, 8’—sublattice B2). 
 

The structure of the (110) section of the unit cell is depicted in Fig. 2, while 
that of the cross-sections in the planes normal to (110)—in Fig. 3. In the system 
of coordinates chosen here, the axis z is normal to the surface, while x and y 
coincide with the versors of translation in the (110) plane. From Fig. 3 it follows 
that both sublattice cease to be distinguishable in the case kx = 0. 
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Since the basic contribution to the dynamic matrix is made by the action of 
the reverse-valency sublattice (see e.g. [2]), the equations of motion in the 
adopted model of actions, will be defined on the strength of the first coordination 
zone. In the notation of Fig. 1 they have the form: 

 
FIG. 3. AB2 structure section in zx plane.            FIG. 4. AB2 structure section in xy-(110) plane. 
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The boundary conditions result from the comparison of the motion equations 
of the interior and the surface, and in the case under consideration reduce to the 
relationship. 

 
The central symmetry of actions ensures automatic fulfilment, in (2.1) and 

(2.2), of the conditions of translatory and rotational invariance of the crystal as a 

whole 

 

Should solely the wave be considered that propagates in the direction y(kx = 
0), then by reason of the actual non-distinguishability of the two sublattices B, 
the relationships (2.1) and (2.2) undergo a simplification through eliminating the 
equations for (u3,  v3,  w3) (they coincide then with the equations for (u2, v2, w2)), 
as well as equating, in the remaining equations, the appropriate component 
deformations. 

3. Solution to the Dynamic Problem of Surface 

Substituting in the equations of motion (2.2) the deformation form 
characteristic of the surface modes: 

 

 

 
 
 
 



Dynamics and adiabatic potential of impurity defects in near-surface layer. Part I        203 

one obtains, on effecting a series of transformations, the characteristic equation 

q(ω)) in the form: 

 

The relationship (3.2) in an algebraic fourth-degree equation for chq, which 
yields, in general, 4 values of q that satisfy the condition of fading Re q > 0 and 
produce a general solution to the boundary problem in the form of the 
superposition: 

 
On putting (3.4) into the boundary conditions (2.2) and expressing all the 

component amplitudes through w1(qj) = w1
j; (j = 1-4), one arrives at the set of 

equations: 
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The determinant of the set (3.5) yields the dispersion dependence wanted. 

4. Results of Numerical Calculations 

The numerical results obtained by using the Odra 1305 computer are shown 
below (with the denotations: 

 
From the plots obtained the following general conclusions can be drawn: 

1. For the range R explored (including the two variations i.e. fluorite and 
antifluorite) the surface modes occur on both the acoustic and the optic branch 
nearly throughout Brillouin's zone (see below), except that in the case ky = 0 (for 
which the two sublattices B are non-distinguishable) there occur two optical 
branches (Figs. 5,9) while in the remaining cases,— one (Figs. 7, 14). The 
parabolic character obtained here ω2(k) in the region of small k for the acoustic 
branch, corresponds to the linear dependence for ω(k). 

 
 
 
 
 
 
 

FIG. 5. Dispersion curves ω2 (0; k2), R = 2.11 
(CaF2). 
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2. In the first half of Brillouin's zone the dispersion relationship for the 
acoustic branch shows one maximum and one minimum, the positions whereof 
do not depend upon the ratio of masses R (it is only the frequency value at the 
maximum point that depends upon this ratio). At the minimum points and their 
nearest surroundings Re q = 0, consequently these are the only regions wherein 
the surface mode does not exist (Fig. 21). The conclusions discussed concern 
Figs. 6, 10, 11 -17. 

3. The value of the above-mentioned maximum as well as the phase velocity 
(for the 

 

FIG. 6. Family of dispersion curves  ω2 (k 1; k2) for various values of k1 (acoustic branch), R = 
2.11. 

 
 

FIG. 7. Family of dispersion curves  ω2 (k 1; k2) for various values of k1  (optical branch), R =2.11. 
Curves 1-8 for k1 = 0; 0,4; 0.8; 1.2; 1.6; 2.0; 2.4. 

 
 
 
 
 



206                                        S. Kaczmarek and J. Kapelewski 
 

 
 

FIG. 8. Dispersion curve ω2 (0; k2) (acoustic branch). 
Numbers 1-5 correspond, respectively, to: 

R= 10; 7.23; 4.61; 2.11; 0.4. 

FIG. 9. Dispersion curve ω2 (0; k2) (acoustic branch) 
Notat. see Fig. 8. 

given R) grow with the increase of kx (for the given ky), With the increase kx the 
maximum shifts towards the greater ky (Fig. 6). 

4. With the increase of m2(m2 = m(B)) (at steady-state m1) the frequency and 
the phase velocity of vibration both acoustic and optical, decreases (Figs. 7 -
13). 

5. In the first half of the Brillouin's zone the frequency and the phase 
velocity of the optical vibration decrease with the increase of kx (for the given 
ky) (Figs. 7, 14). 

6. The fading decrements show a slight dependence upon R. This conclusion 
concerns both branches (Figs. 19, 20). 

 

FIG. 10. Dispersion curve ω2 (0.4; k2) (acoustic branch) Notat. see Fig. 8. 
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7. Within the boundary k -> 0, for the optical branch, the fading decrements 
(dimen-sionless i.e. q = β• a) attain the value of the order 1 (i.e. β ~  a-1). 
Consequently the optical vibrations fade with the distance from the surface. 

8. The dispersion relationships obtained, presented here for selected values of 
R, permit the dependence ω2(k) to be plotted for an arbitrary R, with no 
additional calculations being performed (Figs. 15 -18). 

 
 

FIG. 11. Dispersion curve ω 2 (0.8; k2) (acoustic branch), Notat. see Fig. 8. 
 

 

FIG. 12. Dispersion curve ω 2(l.2; k2) (acoustic branch). 
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FIG. 13. Dispersion curve ω2 (1.6; k2) 

(acoustic branch). 
FIG. 14. Dispersion curves optica 

vibration ω 2 (0.4; k2)-(l-5) as well as (1.6; 
k2) – (1’-5’). Notat. see Fig. 8. 

 
 

FIG. 15. Position of local extreme points 
in the first half of Brillouin's zone in the k  
plane. 

FIG. 16. Dependence of local-maximum 
value of o ω 2 upon R for various k1. 

 

 
FIG. 17. Local-maximum value of ω 2 in function of k1 for various R. Notat. see Fig. 8.
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FIG. 18. Change in ω2 (k1; k2) depending upon R 
(acoustic branch). The curves 1-7 correspond, 
respectively, to: k1 = 1.6; k2 = 0.4;  k1 = 0.8; k2 
= 1.6; k1 = 0.4; k2 = 1.2; k1 = 1.2; k2 = 1.2; k1 = 
1.2; k2 = 0.4; k1 = 0.8; k2 = 0.4; k1 = 0.8; k2 = 

0.8. 

FIG 19. Dependence of maximum 
decaying -decrement upon wave vector 
(acoustic branch), curves 1-4 
correspond, respectively, to k1 = 0.4; 
0.8; 1.2; 1.6 and do not depend upon 
R, 

 
 

FIG. 20. Dependence of maximum decaying-decre- FIG. 21. Dependence of minimum decay ing- 
ment upon wave vector (optical branch). Notat.       decrement upon k1/k2 ratio for the acoustic                      
see  Fig. 19.                                                                branch 
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5. Concluding Notes 

The results presented testify to the existence of the surface vibration modes 
of the fluorite-structure lattice on both the acoustic and the optical branch, 
independently of the mass ratio of the two components. The results permit also, 
in the region of the actual locality of the dynamic matrix, both the dispersion 
relationships and the dependence of decaying decrements upon the wave 
vector, to be determined, for, practically, any representative to the structure 
under consideration. 

The above remark concerns in particular the spectra of the thermal phonons 
in MeF2 and in this connection is of primary practical importance also in the 
analysis of a number of physical processes in the boundary layer and its 
interactions with the electrons of admixtures which enables, among other 
things, its thermodynamic parameters, the width and form of the spectral line of 
near-surface paramagnetic impurities, acoustic resonance and the like [6], to be 
calculated. 

A strictly near-surface nature of vibration on the optical branch, as 
demonstrated in this paper, characterizes the dynamics of this fragment of 
lattice and constitutes from the above angle a substantial element that 
influences a number of materials properties of the boundary layer. 
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Streszczenie 

DYNAMIKA I POTENCJAL ADIABATYCZNY DEFEKTÓW DOMIESZKOWYCH W WARSTWIE 
PRZYPOWIERZCHNIOWEJ STRUKTUR TYPU AB2 

CZ.  I. POWIERZCHNIOWE MODY DRGAÑ KRYSZTA£ÓW 0 STRUKTURZE FLUORYTU I 
ANTYFLUORYTU 

W pracy rozwi¹zano problem powierzchniowych modów drgañ kryszta³ów o strukturze fluorytu i antyfluorytu i 
powierzchni (110), na podstawie modelu oddzia³ywañ centralnych i zlokalizowanych. 

Podano relacje dyspersyjne oraz okreœlono charakter zmiennoœci dekrementów zanikania obu ga³êzi dla ró¿nych 
wartoœci stosunku mas sk³adników komórki elementarnej. 

Uzyskane wyniki s¹ szczególnie efektywne w opisie procesów z udzia³em fononów termicznych warstwy 
brzegowej. 
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Ðåçþìå 
ÄÈÍÀÌÈÊÀ È ÀÄÈÀÁÀÒÈ×ÅÑÊÈÉ ÏÎÒÅÍÖÈÀË ÏÐÈÌÅÑÍÛÕ ÄÅÔÅÊÒÎÂ Â 

ÏÐÈÏÎÂÅÐÕÍÎÑÒÍÎÌ ÑËÎÅ ÑÒÐÓÊÒÓÐ ÒÈÏÀ ÀÂ2 ×. I. ÏÎÂÅÐÕÍÎÑÒÍÛÅ ÌÎÄÛ ÊÎËÅÁÀÍÈÉ 
ÊÐÈÑÒÀËËÎÂ ÑÎ ÑÒÐÓÊÒÓÐÎÉ ÔËÞÎÐÈÒÀ È ÀÍÒÈÔËÞÎÐÈÒÀ 

Â ðàáîòå ðåøåíà çàäà÷à ïîâåðõíîñòíûõ ìîäîâ êîëåáàíèé êðèñòàëëîâ ñî ñòðóêòóðîé ôëþîðèòà 
è àíòèôëþîðèòà è ïîâåðõíîñòè (110), îïèðàÿñü íà ìîäåëü öåíòðàëüíûõ è ëîêàëèçèðîâàííûõ 
âçàèìîäåéñòâèé. 

Ïðèâåäåíû äèñïåðñèîííûå ñîîòíîøåíèÿ è îïðåäåëåí õàðàêòåð èçìåíåíèÿ äåêðåìåíòîâ çàòó-
õàíèÿ îáîèõ âåòâåé, äëÿ ðàçíûõ çíà÷åíèé îòíîøåíèÿ ìàññ êîìïîíåíòîâ ýëåìåíòàðíîé ÿ÷åéêè. 

Ïîëó÷åííûå ðåçóëüòàòû îñîáåííî ýôôåêòèâíû â îïèñàíèé ïðîöåññîâ ñ ó÷àñòèåì òåïëîâûõ 
ôîíîíîâ ãðàíè÷íîãî ñëîÿ. 

Received  Ìàó 14, 1978. 

 


